Login / Signup

Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover.

Victor ApestigueAlejandro GonzaloJuan J JiménezJustin BolandMark T LemmonJose R de MingoElisa García-MenendezJoaquín RivasJoaquín AzcueLaurent BastideNuria Andrés-SantiusteJavier Martínez-OterMiguel González-GuerreroAlberto Martin-OrtegaDaniel ToledoFrancisco Javier Alvarez-RiosFelipe SerranoBoris Martín-VodopivecJavier ManzanoRaquel López HerederoIsaías CarrascoSergio AparicioÁngel CarreteroDaniel R MacDonaldLori B MooreMaría Ángeles AlcaceraJose A Fernández-ViguriIsrael MartínMargarita YelaMaite ÁlvarezPaula ManzanoJose A MartínJuan C Del HoyoManuel ReinaRoser UrquiJose A Rodriguez-ManfrediManuel de la Torre JuárezChristina HernandezElizabeth CordobaRobin LeiterArt ThompsonSoren MadsenMichael D SmithDaniel Viúdez-MoreirasAlfonso Saiz-LopezAgustín Sánchez-LavegaLaura Gomez-MartínGermán M MartínezFrancisco J Gómez-ElviraIgnacio Arruego
Published in: Sensors (Basel, Switzerland) (2022)
The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars' surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars' surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.
Keyphrases
  • polycyclic aromatic hydrocarbons
  • human health
  • machine learning
  • risk assessment
  • radiation therapy
  • big data
  • cross sectional
  • drinking water
  • health risk
  • health risk assessment
  • clinical evaluation