Factors restraining the population growth of Varroa destructor in Ethiopian honey bees (Apis mellifera simensis).
Haftom GebremedhnBezabeh AmssaluLina De SmetDirk C de GraafPublished in: PloS one (2019)
Worldwide, the ecto-parasitic mite Varroa destructor has been assigned as an important driver of honey bee (Apis mellifera) colony losses. Unlike the subspecies of European origin, the honey bees in some African countries such as Uganda and Ethiopia may not be as threatened or suffer less from mite-infestations. However, only little is known about the factors or traits that enable them to co-exist with the mite without beekeepers' intervention. Hence, this study was designed to investigate these factors or traits that limit the Varroa mite population in Ethiopian honey bees (Apis mellifera simensis). The study was conducted in the primary honey producing region of Ethiopia, i.e. Tigray. Mite infestation levels were shown to be lower in traditional hives (when compared to framed hives) and when colonies were started up from swarm catching (when compared to colony splitting). However, the influence of the comb cell size on mite infestation was not observed. With respect to the bee biology, the hygienic behavior was shown to be high (pin-test: 92.2% removal in 24 hours) and was negatively correlated with phoretic mite counts (Pearson; r = -0.79; P < 0.01) and mite infestation levels in brood (Pearson; r = -0.46; P < 0.001). Efforts to estimate the Varroa mite reproductive capacity were seriously hampered by an extremely low brood infestation level. From the 133 founder mites found (in 6727 capped brood cells) only 18.80% were capable of producing a reproductive progeny. Failure to produce adult male progeny was unexpectedly high (79.70%). We have suggested a few adaptations to the test protocols allowing to estimate the protective traits of honey bee colonies under very low Varroa pressure. Apart from that, this study demonstrates that the honey bees from Ethiopia are suitable targets to further decipher the genetic predisposition of resistance against V. destructor. It is still unclear to what extent simensis differs from the more common scutellata subspecies.