Login / Signup

Photostable and Biocompatible Fluorescent Silicon Nanoparticles-Based Theranostic Probes for Simultaneous Imaging and Treatment of Ocular Neovascularization.

Miaomiao TangXiaoyuan JiHua XuLu ZhangAirui JiangBin SongYuanyuan SuYao He
Published in: Analytical chemistry (2018)
Ocular neovascularization can result in devastating diseases that lead to marked vision impairment and eventual visual loss. In clinical implementation, neovascular eye diseases are first diagnosed by fluorescein angiography and then treated by multiple intravitreal injections, which nevertheless involves vision-threatening complications, as well as lack of real-time monitoring disease progression and timely assessment of therapeutic outcomes. To address this critical issue, we herein present a kind of theranostic agents made of peptide-functionalized silicon nanoparticles (SiNPs), suitable for simultaneous ocular neovascularization imaging and therapy. Typically, in addition to negligible toxicity and high specific binding ability to human retinal microvascular endothelial cells tube formation, the cyclo-(Arg-Gly-Asp-d-Tyr-Cys) ( c-(RGDyC))-conjugated SiNPs (SiNPs-RGD) features efficacious antiangiogenic ability in wound healing migration, transwell migration, transwell invasion, and tube formation assays. Taking advantage of these unique merits, we further employ the SiNPs-RGD for labeling angiogenic blood vessels and neovascularization suppression, demonstrating obvious inhibition of new blood vessels formation in mouse corneas. These results suggest the SiNPs-RGD as a novel class of high-quality theranostic probes is suitable for simultaneous diagnosis and treatment in ocular neovascular diseases.
Keyphrases