Login / Signup

Increasing precipitation variability on daily-to-multiyear time scales in a warmer world.

Wenxia ZhangKalli FurtadoPeili WuTianjun ZhouRobin ChadwickCharline MarzinJohn RostronDavid Sexton
Published in: Science advances (2021)
The hydrological cycle intensifies under global warming with precipitation increases. How the increased precipitation varies temporally at a given location has vital implications for regional climates and ecosystem services. On the basis of ensemble climate model projections under a high-emission scenario, here, we show that approximately two-thirds of land on Earth will face a "wetter and more variable" hydroclimate on daily to multiyear time scales. This means wider swings between wet and dry extremes. Such an amplification of precipitation variability is particularly prominent over climatologically wet regions, with percentage increases in variability more than twice those in mean precipitation. Thermodynamic effects, linked to increased moisture availability, increase precipitation variability uniformly everywhere. It is the dynamic effects (negative) linked to weakened circulation variability that make precipitation variability changes strongly region dependent. The increase in precipitation variability poses an additional challenge to the climate resilience of infrastructures and human society.
Keyphrases
  • climate change
  • endothelial cells
  • healthcare
  • primary care
  • risk assessment
  • social support
  • induced pluripotent stem cells
  • neural network