The Role of Micro RNA and Long-Non-Coding RNA in Osteoporosis.
Nai-Yu KoLi-Ru ChenKuo-Hu ChenPublished in: International journal of molecular sciences (2020)
Osteoporosis is a major concern worldwide and can be attributed to an imbalance between osteoblastic bone formation and osteoclastic bone resorption due to the natural aging process. Heritable factors account for 60-80% of optimal bone mineralization; however, the finer details of pathogenesis remain to be elucidated. Micro RNA (miRNA) and long-non-coding RNA (lncRNA) are two targets that have recently come into the spotlight due to their ability to control gene expression at the post-transcriptional level and provide epigenetic modification. miRNAs are a class of non-coding RNAs that are approximately 18-25 nucleotides long. It is thought that up to 60% of human protein-coding genes may be regulated by miRNAs. They have been found to regulate gene expression that controls osteoblast-dependent bone formation and osteoclast-related bone remodeling. lncRNAs are highly structured RNA transcripts longer than 200 nucleotides that do not translate into proteins. They have very complex secondary and tertiary structures and the same degradation processes as messenger RNAs. The fact that they have a rapid turnover is due to their sponge function in binding the miRNAs that lead to a degradation of the lncRNA itself. They can act as signaling, decoy, and framework molecules, or as primers. Current evidence suggests that lncRNAs can act as chromatin and transcriptional as well as post-transcriptional regulators. With regards to osteoporosis, lncRNA is thought to be involved in the proliferation, apoptosis, and inflammatory response of the bone. This review, which is based on a systematic appraisal of the current literature, provides current molecular and genetic opinions on the roles of miRNAs and lncRNAs in osteoporosis. Further research into the epigenetic modification and the regulatory roles of these molecules will bring us closer to potential disease-modifying treatment for osteoporosis. However, more issues regarding the detailed actions of miRNAs and lncRNAs in osteoporosis remain unknown and controversial and warrant future investigation.
Keyphrases
- bone mineral density
- long non coding rna
- gene expression
- postmenopausal women
- poor prognosis
- body composition
- dna methylation
- transcription factor
- inflammatory response
- genome wide identification
- genome wide
- network analysis
- systematic review
- endothelial cells
- bone loss
- genome wide analysis
- signaling pathway
- risk assessment
- soft tissue
- bone regeneration
- toll like receptor
- cell death
- long noncoding rna
- single molecule
- combination therapy
- quantum dots
- lps induced
- dna binding
- vascular smooth muscle cells