Login / Signup

E-hooks provide guidance and a soft landing for the microtubule binding domain of dynein.

Nayere TajielyatoLin LiYunhui PengJoshua Daniel AlperEmil Alexov
Published in: Scientific reports (2018)
Macromolecular binding is a complex process that involves sensing and approaching the binding partner, adopting the proper orientation, and performing the physical binding. We computationally investigated the role of E-hooks, which are intrinsically disordered regions (IDRs) at the C-terminus of tubulin, on dynein microtubule binding domain (MTBD) binding to the microtubule as a function of the distance between the MTBD and its binding site on the microtubule. Our results demonstrated that the contacts between E-hooks and the MTBD are dynamical; multiple negatively charted patches of amino acids on the E-hooks grab and release the same positively charged patches on the MTBD as it approaches the microtubule. Even when the distance between the MTBD and the microtubule was greater than the E-hook length, the E-hooks sensed and guided MTBD via long-range electrostatic interactions in our simulations. Moreover, we found that E-hooks exerted electrostatic forces on the MTBD that were distance dependent; the force pulls the MTBD toward the microtubule at long distances but opposes binding at short distances. This mechanism provides a "soft-landing" for the MTBD as it binds to the microtubule. Finally, our analysis of the conformational states of E-hooks in presence and absence of the MTBD indicates that the binding process is a mixture of the induced-fit and lock-and-key macromolecular binding hypotheses. Overall, this novel binding mechanism is termed "guided-soft-binding" and could have broad-reaching impacts on the understanding of how IDRs dock to structured proteins.
Keyphrases
  • dna binding
  • binding protein
  • physical activity
  • molecular dynamics simulations
  • molecular dynamics
  • hepatitis c virus
  • transcription factor
  • endothelial cells
  • amino acid
  • atomic force microscopy
  • stress induced