Login / Signup

MusaATAF2 like protein, a stress-related transcription factor, induces leaf senescence by regulating chlorophyll catabolism and H2 O2 accumulation.

Subham BhaktaSanjana NegiHimanshu TakSudhir SinghThumballi Ramabhatta Ganapathi
Published in: Physiologia plantarum (2021)
NAC transcription factors are known for their diverse role in plants. In this study, we have demonstrated the role of MusaATAF2, a banana NAC transcription factor, in leaf senescence. Its expression gets strongly up-regulated during the early stress responses of drought and high salinity exposure and down-regulated under ABA application, which suggests MusaATAF2 is a stress-related NAC transcription factor. To study the role of MusaATAF2 in banana, we have transformed the banana embryogenic cells with MusaATAF2 coding region and generated transgenic banana plants. Overexpression of MusaATAF2 in banana plants caused yellow leaf phenotype under control condition, suggesting its role as a senescence-associated transcription factor. Transgenic banana leaves exhibited low chlorophyll content and high H2 O2 accumulation. Hormone analysis of the leaves demonstrated a higher accumulation of ABA in the transgenic plants than the controls. Transgenic plants overexpressing MusaATAF2 have a higher transcript abundance of two chlorophyll catabolic pathway genes (PAO and HCAR) and lower transcript abundance of ROS scavenging enzymes (TDP, THIO, CAT, APX, and PRXDN) than control. Together, all these analyses indicate that MusaATAF2 induces senescence by inducing chlorophyll degradation and H2 O2 accumulation in banana plants and controls its own expression using an ABA-dependent feedback loop.
Keyphrases