Suppression of Platelet-Derived Growth Factor Receptor-Alpha Overcomes Resistance to Trastuzumab through STAT3-Dependent IL-6 Reduction in HER2-Positive Breast Cancer Cells.
Sangmin KimHyungjoo KimYisun JeongDaeun YouSun Young YoonEunji LoSeok Jin NamJeong Eon LeeSeok Won KimPublished in: Biomedicines (2023)
Platelet-derived growth factor receptor (PDGFR) plays an essential role in the proliferation and invasion of malignant cancer cells. However, the functional role of PDGFR alpha (PDGFRA) in HER2-positive (HER2+) breast cancer has not been fully clarified yet. Thus, the objective of this study was to investigate the clinical significance of PDGFRA and the therapeutic potential of PDGFR inhibitors as part of an effort to overcome trastuzumab (TRZ) resistance. Aberrant PDGFRA expression is closely associated with decreased survival in HER2+ breast cancers. Therefore, we established BT474 trastuzumab-sensitive (TRZ_S) and trastuzumab-resistant (TRZ_R) cells to investigate the association between PDGFR signaling and TRZ resistance. We found that PDGFRA was significantly upregulated in the BT474 TRZ_R cells. In addition, IL-6 expression, which was also found to be upregulated in the TRZ_R cells, was induced by PDGFC, a ligand of PDGFR. Next, we investigated the effects of ponatinib and sunitinib, PDGFR inhibitors, on the BT474 TRZ_R and HCC1954 (TRZ-resistant cell line) cells. These inhibitors decreased cell viability and migration in a dose-dependent manner. Additionally, IL-6 expression was decreased by ponatinib in both the BT474 TRZ_R and HCC1954 cells. In contrast, IL-6 was not suppressed by TRZ, implying that the PDGFRA/STAT3/IL-6 axis is associated with resistance to TRZ. In addition, we found that STAT3 and ERK phosphorylation were increased in the BT474 TRZ_R cells. IL-6 expression was suppressed by a STAT3 inhibitor, indicating that IL-6 expression is modulated downstream of STAT3. Taken together, these results suggest that PDGFRA could serve as a therapeutic target to overcome TRZ resistance.