Login / Signup

Titanium Dioxide Thin Films Obtained by Atomic Layer Deposition Promotes Osteoblasts' Viability and Differentiation Potential While Inhibiting Osteoclast Activity-Potential Application for Osteoporotic Bone Regeneration.

Agnieszka SmieszekAleksandra SewerynKlaudia MarcinkowskaMateusz SikoraKrystyna Ławniczak-JabłońskaBartlomiej S WitkowskiPiotr KuzmiukMarek GodlewskiKrzysztof Marycz
Published in: Materials (Basel, Switzerland) (2020)
Atomic layer deposition (ALD) technology has started to attract attention as an efficient method for obtaining bioactive, ultrathin oxide coatings. In this study, using ALD, we have created titanium dioxide (TiO2) layers. The coatings were characterised in terms of physicochemical and biological properties. The chemical composition of coatings, as well as thickness, roughness, wettability, was determined using XPS, XRD, XRR. Cytocompatibillity of ALD TiO2 coatings was accessed applying model of mouse pre-osteoblast cell line MC3T3-E1. The accumulation of transcripts essential for bone metabolism (both mRNA and miRNA) was determined using RT-qPCR. Obtained ALD TiO2 coatings were characterised as amorphous and homogeneous. Cytocompatibility of the layers was expressed by proper morphology and growth pattern of the osteoblasts, as well as their increased viability, proliferative and metabolic activity. Simultaneously, we observed decreased activity of osteoclasts. Obtained coatings promoted expression of Opn, Coll-1, miR-17 and miR-21 in MC3T3-E1 cells. The results are promising in terms of the potential application of TiO2 coatings obtained by ALD in the field of orthopaedics, especially in terms of metabolic- and age-related bone diseases, including osteoporosis.
Keyphrases