Login / Signup

Metal ion-regulated assembly of designed modular protein cages.

Jana AupičFabio LapentaŽiga StrmšekEstera MerljakTjaša PlaperRoman Jerala
Published in: Science advances (2022)
Coiled-coil (CC) dimers are versatile, customizable building modules for the design of diverse protein architectures unknown in nature. Incorporation of dynamic self-assembly, regulated by a selected chemical signal, represents an important challenge in the construction of functional polypeptide nanostructures. Here, we engineered metal binding sites to render an orthogonal set of CC heterodimers Zn(II)-responsive as a generally applicable principle. The designed peptides assemble into CC heterodimers only in the presence of Zn(II) ions, reversibly dissociate by metal ion sequestration, and additionally act as pH switches, with low pH triggering disassembly. The developed Zn(II)-responsive CC set is used to construct programmable folding of CC-based nanostructures, from protein triangles to a two-chain bipyramidal protein cage that closes and opens depending on the metal ion. This demonstrates that dynamic self-assembly can be designed into CC-based protein cages by incorporation of metal ion-responsive CC building modules that act as conformational switches and that could also be used in other contexts.
Keyphrases
  • protein protein
  • amino acid
  • heavy metals
  • cancer therapy
  • small molecule
  • molecular dynamics simulations
  • molecular dynamics