Self-assembly and characterization of 2D plasmene nanosheets.
Dashen DongRunfang FuQianqian ShiWenlong ChengPublished in: Nature protocols (2019)
Freestanding plasmonic nanoparticle (NP) superlattice sheets are novel 2D nanomaterials with tailorable properties that enable their use for broad applications in sensing, anticounterfeit measures, ionic gating, nanophotonics and flat lenses. We recently developed a robust, yet general, two-step drying-mediated approach to produce freestanding monolayer, plasmonic NP superlattice sheets, which are typically held together by holey grids with minimal solid support. Within these superlattices, NP building blocks are closely packed and have strong plasmonic coupling interactions; hence, we termed such freestanding materials 'plasmene nanosheets'. Using the desired NP building blocks as starting material, we describe the detailed fabrication protocol, including NP surface functionalization by thiolated polystyrene and the self-assembly of NPs at the air-water interface. We also discuss various characterization approaches for checking the quality and optical properties of the as-obtained plasmene nanosheets: optical microscopy, spectrophotometry, transmission/scanning electron microscopy (TEM/SEM) and atomic force microscopy (AFM). With regard to different constituent building blocks, the key experimental parameters, including NP concentration and volume, are summarized to guide the successful fabrication of specific types of plasmene nanosheets. This protocol, from initial NP synthesis to the final fabrication and characterization, takes ~33.5 h.
Keyphrases