Brain Anatomical Mediators of GRIN2B Gene Association with Attention/Hyperactivity Problems: An Integrated Genetic-Neuroimaging Study.
Maria NobileEleonora MaggioniMaddalena MauriMarco GarzittoSara PiccinCarolina BoniventoRoberto GiordaRossano GiromettiBarbara TomasinoMassimo MolteniFranco FabbroPaolo BrambillaPublished in: Genes (2021)
This study aims to investigate the genetic and neural determinants of attention and hyperactivity problems. Using a proof-of-concept imaging genetics mediation design, we explore the relationship between the glutamatergic GRIN2B gene variants and inattention/hyperactivity with neuroanatomical measures as intermediates. Fifty-eight children and adolescents were evaluated for behavioral problems at three time points over approximately 7 years. The final assessment included blood drawing for genetic analyses and 3T magnetic resonance imaging. Attention/hyperactivity problems based on the Child Behavior Checklist/6-18, six GRIN2B polymorphisms and regional cortical thickness, and surface area and volume were estimated. Using general linear model (GLM) and mediation analyses, we tested whether GRIN2B exerted an influence on stable inattention/hyperactivity over development, and to what extent this effect was mediated by brain morphology. GLM results enlightened the relation between GRIN2B rs5796555-/A, volume in the left cingulate isthmus and inferior parietal cortices and inattention/hyperactivity. The mediation results showed that rs5796555-/A effect on inattention/hyperactivity was partially mediated by volume in the left isthmus of the cingulate cortex, suggesting a key role of this region in translating glutamatergic GRIN2B variations to attention/hyperactivity problems. This evidence can have important implications in the management of neurodevelopmental and psychiatric disorders.