Login / Signup

Regulation Mechanism of Bubbling Deformation and Fracture Toughness of the Membrane by Asymmetric Phospholipids: A Model System Study.

Yang YangXiangyu BuXinghua Zhang
Published in: Langmuir : the ACS journal of surfaces and colloids (2020)
Dynamic regulation of the deformation modulus and fracture toughness of a membrane is critical to organelles and cells for matching their conflicting needs of resilient and fractured behaviors. These properties implement the protection of the function in the normal condition and the fission function in the endocytosis condition of a membrane. Naturally, a membrane contains phospholipids that have different hydrophilic and hydrophobic group length. The diffusion and aggregation of the phospholipids with asymmetry of the hydrophilic-hydrophobic ratio on the membrane play a key role in regulating the mechanical behaviors passively to the external force. In present work, the effects of the asymmetry of phospholipids on the bubbling deformation and fracture toughness of the membrane to external stretching are investigated in a model system. A disk-shaped micelle formed from the blend of symmetric and asymmetric diblock copolymers in a selective solvent is considered as the membrane sheet. Its mechanically responsive behaviors are investigated by self-consistent field theory. By analyzing the evolution of different components during the stretching process, the mechanism of formation of the bubbling structure is revealed. Moreover, the fracture toughness depending on the asymmetry of the phospholipids is determined quantitatively.
Keyphrases
  • fatty acid
  • induced apoptosis
  • hip fracture
  • drug delivery
  • cell proliferation
  • oxidative stress