Toward the Formulation of Stable Micro and Nano Double Emulsions through a Silica Coating on Internal Water Droplets.
Salman AkramXinyue WangThierry F VandammeMayeul CollotAsad Ur RehmanNadia MessaddeqYves MelyNicolas AntonPublished in: Langmuir : the ACS journal of surfaces and colloids (2019)
Delivery systems able to coencapsulate both hydrophilic and hydrophobic species are of great interest in both fundamental research and industrial applications. Water-in-oil-in-water (w1/O/W2) emulsions are interesting systems for this purpose, but they suffer from limited stability. In this study, we propose an innovative approach to stabilize double emulsions by the synthesis of a silica membrane at the water/oil interface of the primary emulsion (i.e., inner w1/O emulsion). This approach allows the formulation of stable double emulsions through a two-step process, enabling high encapsulation efficiencies of model hydrophilic dyes encapsulated in the internal droplets. This approach also decreases the scale of the double droplets up to the nanoscale, which is not possible without silica stabilization. Different formulation and processing parameters were explored in order to optimize the methodology. Physicochemical characterization was performed by dynamic light scattering, encapsulation efficiency measurements, release profiles, and optical and transmission electron microscopies.