Single-cell and Spatial Transcriptomic Analyses Implicate Formation of the Immunosuppressive Microenvironment during Breast Tumor Progression.
Fengfeng CaiYuanYuan LiHui LiuJudong LuoPublished in: Journal of immunology (Baltimore, Md. : 1950) (2024)
Ductal carcinoma in situ and invasive ductal carcinoma represent two stages of breast cancer progression. A multitude of studies have shown that genomic instability increases during tumor development, as manifested by higher mutation and copy number variation rates. The advent of single-cell and spatial transcriptomics has enabled the investigation of the subtle differences in cellular states during the tumor progression at single-cell level, thereby providing more nuanced understanding of the intercellular interactions within the solid tumor. However, the evolutionary trajectory of tumor cells and the establishment of the immunosuppressive microenvironment during breast cancer progression remain unclear. In this study, we performed an exploratory analysis of the single-cell sequencing dataset of 13 ductal carcinoma in situ and invasive ductal carcinoma samples. We revealed that tumor cells became more malignant and aggressive during their progression, and T cells transited to an exhausted state. The tumor cells expressed various coinhibitory ligands that interacted with the receptors of immune cells to create an immunosuppressive tumor microenvironment. Furthermore, spatial transcriptomics data confirmed the spatial colocalization of tumor and immune cells, as well as the expression of the coinhibitory ligand-receptor pairs. Our analysis provides insights into the cellular and molecular mechanism underlying the formation of the immunosuppressive landscape during two typical stages of breast cancer progression.