Login / Signup

The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity.

Dagmar MoravčíkováJana Žiarovská
Published in: Plants (Basel, Switzerland) (2023)
Cadmium (Cd) is a heavy metal that can cause damage to living organisms at different levels. Even at low concentrations, Cd can be toxic to plants, causing harm at multiple levels. As they are unable to move away from areas contaminated by Cd, plants have developed various defence mechanisms to protect themselves. Hyperaccumulators, which can accumulate and detoxify heavy metals more efficiently, are highly valued by scientists studying plant accumulation and detoxification mechanisms, as they provide a promising source of genes for developing plants suitable for phytoremediation techniques. So far, several genes have been identified as being upregulated when plants are exposed to Cd. These genes include genes encoding transcription factors such as iron-regulated transporter-like protein (ZIP), natural resistance associated macrophage protein (NRAMP) gene family, genes encoding phytochelatin synthases (PCs), superoxide dismutase (SOD) genes, heavy metal ATPase (HMA), cation diffusion facilitator gene family (CDF), Cd resistance gene family (PCR), ATP-binding cassette transporter gene family (ABC), the precursor 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and precursor 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) multigene family are also influenced. Thanks to advances in omics sciences and transcriptome analysis, we are gaining more insights into the genes involved in Cd stress response. Recent studies have also shown that Cd can affect the expression of genes related to antioxidant enzymes, hormonal pathways, and energy metabolism.
Keyphrases