Gradient monolayered porous membrane for liquid manipulation: from fabrication to application.
Qiuya ZhangKe LiYuliang LiYan LiXiaofang ZhangYi DuDongliang TianPublished in: Nanoscale advances (2022)
The controlled transport of liquid on a smart material surface has important applications in the fields of microreactors, mass and heat transfer, water collection, microfluidic devices and so on. Porous membranes with special wettability have attracted extensive attention due to their unique unidirectional transport behavior, that is, liquid can easily penetrate in one direction while reverse transport is prevented, which shows great potential in functional textiles, fog collection, oil/water separation, sensors, etc. However, many porous membranes are synthesized from multilayer structural materials with poor mechanical properties and are currently prone to delamination, which limits their stability. While a monolayered porous membrane, especially for gradient structure, is an efficient, stable and durable material owing to its good durability and difficult stratification. Therefore, it is of great significance to fabricate a monolayered porous membrane for controllable liquid manipulation. In this minireview, we briefly introduce the classification and fabrication of typical monolayered porous membranes. And the applications of monolayered porous membranes in unidirectional penetration, selective separation and intelligent response are further emphasized and discussed. Finally, the controllable preparation and potential applications of porous membranes are featured and their prospects discussed on the basis of their current development.