Chitosan/Calcium Silicate Cardiac Patch Stimulates Cardiomyocyte Activity and Myocardial Performance after Infarction by Synergistic Effect of Bioactive Ions and Aligned Nanostructure.
Xiaotong WangLeyu WangQiang WuFeng BaoHuangtian YangXiaozhong QiuJiang ChangPublished in: ACS applied materials & interfaces (2018)
Cardiac tissue engineering (CTE) remains a great challenge to construct a cell-inductive scaffold that has positive effects on cardiac cell behaviors and cardiac tissue repair. In this study, we for the first time demonstrated that Si ions evidently stimulated the expression of cardiac-specific genes and proliferation of neonatal rat cardiomyocytes (NRCMs) at concentration ranges of 0.13-10.78 ppm. Accordingly, the optimized concentrations of calcium silicate (CS) were incorporated into the controllable aligned chitosan electrospun nanofibers, constructing the composite cardiac patch scaffolds. These scaffolds showed synergistic effect of bioactive chemical and structural signals on both cardiomyocytes and endothelial cells with aligned cell morphology and enhanced viability and function characterized by upregulated expressions of cardiac and angiogenic specific markers, improved myofilament structure, and better Ca2+ transients of NRCMs as compared to the scaffolds free of CS component or with disordered structures. The in vivo studies further demonstrated that the NRCM-seeded aligned CS/chitosan cardiac patch evidently improved cardiac function via limiting the scar area and promoting angiogenesis in postmyocardial infarction rats. Conclusively, our study highlights the potential application of bioactive ions and nanostructured biomaterials in CTE, and the CS/chitosan composite cardiac patch may be a promising scaffold for repair of infarcted myocardium.
Keyphrases
- tissue engineering
- left ventricular
- drug delivery
- endothelial cells
- wound healing
- single cell
- poor prognosis
- gene expression
- signaling pathway
- stem cells
- transcription factor
- oxidative stress
- cancer therapy
- mass spectrometry
- climate change
- genome wide
- high resolution
- hyaluronic acid
- atrial fibrillation
- vascular endothelial growth factor
- long non coding rna