Login / Signup

Turning Waste into Treasure: Regulating the Oxygen Corrosion on Fe Foam for Efficient Electrocatalysis.

Xupo LiuMingxing GongDongdong XiaoShaofeng DengJianing LiangTonghui ZhaoYun LuTao ShenJian ZhangDeli Wang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
Iron corrosion causes a great damage to the economy due to the function attenuation of iron-based devices. However, the corrosion products can be used as active materials for some electrocatalytic reactions, such as oxygen evolution reaction (OER). Herein, the oxygen corrosion on Fe foams (FF) to synthesize effective self-supporting electrocatalysts for OER, leading to "turning waste into treasure," is regulated. A dual chloride aqueous system of "NaCl-NiCl2 " is employed to tailor the structures and OER properties of corrosion layers. The corrosion behaviors identify that Cl- anions serve as accelerators for oxygen corrosion, while Ni2+ cations guarantee the uniform growth of corrosion layers owing to the appeared chemical plating. The synergistic effect of "NaCl-NiCl2 " generates one of the highest OER activities that only an overpotential of 212 mV is required to achieve 100 mA cm-2 in 1.0 m KOH solution. The as-prepared catalyst also exhibits excellent durability over 168 h (one week) at 100 mA cm-2 and promising application for overall water splitting. Specially, a large self-supporting electrode (9 × 10 cm2 ) is successfully synthesized via this cost-effective and easily scale-up approach. By combining with corrosion science, this work provides a significant stepping stone in exploring high-performance OER electrocatalysts.
Keyphrases
  • ionic liquid
  • metal organic framework
  • public health
  • heavy metals
  • randomized controlled trial
  • oxidative stress
  • high resolution
  • mass spectrometry
  • gold nanoparticles
  • reduced graphene oxide
  • editorial comment