Login / Signup

Mechanism Study of the Formation of Indigo Carmine-Aluminum Hydroxide Lake for Food Use.

Dongdong YuanChengtao WangYa LiuSheng LeiYanjun Wen
Published in: Journal of food science (2019)
Although aluminum lakes are widely used in food industry for dyeing demands, there is still a dearth in the understanding of the colorant lake formation mechanism. In this study, indigo carmine (IC) lake (IC-aluminum hydroxide complex), a frequently used blue lake in the food industry, was investigated in terms of kinetics, isotherms, properties of colloidal particles, infrared (IR) spectra, and titration curves. Pseudo-second-order model presented the strongest correlation with the kinetic data at all pH levels (R2  ≥ 0.994). In pH range from 4 to 7, the colloidal particles of aluminum hydroxide were positively charged with zeta potential around 44 mV; a further pH increase induced to a decreased zeta potential, which reached negative levels at pH 10 and beyond. Diameter maximized at pH 10 (22.47 µm) and declined when the pH was reduced. Isotherm analysis showed that the adsorption followed monolayer adsorption patterns, as described by the Langmuir isotherm model. IR spectra indicated sulfonic acid groups participated in a chemical reaction during adsorption, and the titration assay further confirmed the formation of coordination bonds between sulfonic acid groups and aluminum atoms. This study profiled the reaction responsible for the formation of the blue lake and elucidated its reaction mechanism. Furthermore, the outcome could assist in improving the production efficiency of the lake through achieving higher reaction rate and adsorption capacity. PRACTICAL APPLICATION: The study elucidated the mechanism of indigo carmine (IC)-aluminum hydroxide lake formation, including profile of the adsorption process and molecular interaction between the blue dye and the hydroxide. The outcome of this study would help to improve the production efficiency of IC-aluminum hydroxide lakes, and to decrease the content of aluminum required in the lake by optimizing the production parameters to enhance the adsorption capacity of aluminum hydroxide, which would facilitate the alleviation of the potential health hazards caused by excessive intake of aluminum through foods.
Keyphrases
  • aqueous solution
  • healthcare
  • mental health
  • oxidative stress
  • risk assessment
  • physical activity
  • health information
  • big data
  • weight gain
  • highly efficient
  • molecular dynamics
  • diabetic rats
  • optic nerve