Protein arginine methyltransferase 5 (PRMT5), a type II PRMT enzyme, is reported as an important therapeutic target in leukemia and lymphoma. In the present study, based on the combination of virtual screening and biochemical validations, we discovered a series of small-molecule inhibitors targeting PRMT5. Among those, DC_Y134 exhibited the most potent activity with IC50 value of 1.7 μM and displayed good selectivity against other methyltransferases. Further treatment with DC_Y134 inhibited the proliferation of several hematological malignancy cell lines by causing cell cycle arrest and apoptosis. Western blot assays indicated that DC_Y134 reduced the cellular symmetrically dimethylated levels. In addition, we analyzed the binding mode of DC_Y134 through molecular docking, which revealed that DC_Y134 occupies the binding site of substrate arginine and explained the selectivity of this inhibitor. Taken together, compound DC_Y134 could be used to elucidate the biological roles of PRMT5 and serve as a lead compound for treatment of hematologic malignancies.
Keyphrases
- dendritic cells
- cell cycle arrest
- molecular docking
- small molecule
- nitric oxide
- amino acid
- cell death
- single cell
- oxidative stress
- high throughput
- binding protein
- molecular dynamics simulations
- signaling pathway
- bone marrow
- stem cells
- cell proliferation
- diffuse large b cell lymphoma
- replacement therapy
- cancer therapy
- drug delivery
- smoking cessation
- structural basis