Login / Signup

Visualization of Phospholipid Synthesis on Tissue Sections Using Functional Mass Spectrometry Imaging.

Taiga IwamaKuniyuki KanoHiroki KawanaHideo ShindouTakao ShimizuNozomu KonoJunken Aoki
Published in: Analytical chemistry (2024)
Functional mass spectrometry imaging (fMSI) is a potent tool for elucidating the spatial distribution of enzyme activities in tissues at high resolution. In this study, we applied fMSI to probe the intricate biosynthesis of phospholipids, which exist as thousands of molecular species in tissues and exhibit a unique distribution specific to cell type. By using deuterium- and 13 C-labeled substrates, we visualized the activities of key enzymes involved in phospholipid synthesis, including glycerol 3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferases (LPAAT), lysophospholipid acyltransferases (LPLAT), and long-chain acyl-CoA synthetase (ACSL). Additionally, we were able to visualize a two-step sequential enzyme reaction involving ACSL and LPLAT. This novel approach unveiled significant variations in enzyme activity distribution depending on the type of fatty acids used as substrates. It will also help to reveal the mechanisms underlying the formation of numerous phospholipid species.
Keyphrases