Improved cell proliferation and testosterone secretion following exposure of TM3 Leydig cells to three-dimensional scaffold and light emitting diode.
Badrossadat AlaviMohammad ShojaeiTahereh HaghpanahVida MirzaieMohsen Abedini EsfahlaniMahshid JalalkamaliFatemeh SeyediSeyed Noureddin Nematollahi-MahaniPublished in: Andrologia (2022)
Green LED and three-dimensional (3D) scaffolds have recently received extensive attentions due to their impact on cell proliferation and differentiation. Melatonin, a circadian rhythm-regulating hormone, is involved in some physiological phenomena including testosterone biosynthesis. Lower testosterone biosynthesis results in some disorders such as puberty retarding, andropause, and muscle weakness. Therefore, our aim was to investigate the proliferation of Leydig cells and their testosterone-related Gene expression and secretion under the influence of 3D scaffold, green light and melatonin. The experimental groups of TM3 cells embedded in the 3D scaffold, were exposed to green light, melatonin, both and all three factors. Expression of cell cycle genes including PCNA, CYCLIND1, CDC2 and CDKN1B, and testosterone related genes; GATA4 and RORα were also examined. 3D scaffold enhanced Leydig cells proliferation, and testosterone-related genes expression. While melatonin decreased cell proliferation and testosterone-related genes expression. Green light did not significantly change the results but slightly decreased cell proliferation and testosterone synthesis. The combination of green light with melatonin significantly reduced the proliferation rate of TM3 cells and the expression of steroidogenic genes, while the combination of green light with scaffold improved the results. In general, the use of scaffolding enhances proliferation and testosterone-related genes expression of TM3 Leydig cells. Also, application of green light and scaffolding reduces the deleterious effects of melatonin on these cells.