The Do's and Don'ts of Psychophysical Methods for Interpretability of Psychometric Functions and Their Descriptors.
Miguel Ángel García-PérezRocío Alcalá-QuintanaPublished in: The Spanish journal of psychology (2019)
Many areas of research require measuring psychometric functions or their descriptors (thresholds, slopes, etc.). Data for this purpose are collected with psychophysical methods of various types and justification for the interpretation of results arises from a model of performance grounded in signal detection theory. Decades of research have shown that psychophysical data display features that are incompatible with such framework, questioning the validity of interpretations obtained under it and revealing that psychophysical performance is more complex than this framework entertains. This paper describes the assumptions and formulation of the conventional framework for the two major classes of psychophysical methods (single- and dual-presentation methods) and presents various lines of empirical evidence that the framework is inconsistent with. An alternative framework is then described and shown to account for all the characteristics that the conventional framework regards as anomalies. This alternative process model explicitly separates the sensory, decisional, and response components of performance and represents them via parameters whose estimation characterizes the corresponding processes. Retrospective and prospective evidence of the validity of the alternative framework is also presented. A formal analysis also reveals that some psychophysical methods and response formats are unsuitable for separation of the three components of observed performance. Recommendations are thus given regarding practices that should be avoided and those that should be followed to ensure interpretability of the psychometric function, or descriptors (detection threshold, difference limen, point of subjective equality, etc.) obtained with shortcut methods that do not require estimation of psychometric functions.