Synthetic Biology Knowledge System.
Jeanet ManteYikai HaoJacob JettUdayan JoshiKevin KeatingXiang LuGaurav NakumNicholas E RodriguezJiawei TangLogan TerryXuanyu WuEric YuJ Stephen DownieBridget T McInnesMai H NguyenBrandon SepulvadoEric M YoungChris John MyersPublished in: ACS synthetic biology (2021)
The Synthetic Biology Knowledge System (SBKS) is an instance of the SynBioHub repository that includes text and data information that has been mined from papers published in ACS Synthetic Biology. This paper describes the SBKS curation framework that is being developed to construct the knowledge stored in this repository. The text mining pipeline performs automatic annotation of the articles using natural language processing techniques to identify salient content such as key terms, relationships between terms, and main topics. The data mining pipeline performs automatic annotation of the sequences extracted from the supplemental documents with the genetic parts used in them. Together these two pipelines link genetic parts to papers describing the context in which they are used. Ultimately, SBKS will reduce the time necessary for synthetic biologists to find the information necessary to complete their designs.