Estrogen-related receptor α is involved in angiogenesis and skeletal muscle revascularization in hindlimb ischemia.
Danesh H SopariwalaNeah LikhiteGuangsheng PeiFnu HaroonLisa LinVikas YadavZhongming ZhaoVihang A NarkarPublished in: FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2021)
Skeletal muscle ischemia is a major consequence of peripheral arterial disease (PAD) or critical limb ischemia (CLI). Although therapeutic options for resolving muscle ischemia in PAD/CLI are limited, the issue is compounded by poor understanding of the mechanisms driving muscle vascularization. We found that nuclear receptor estrogen-related receptor alpha (ERRα) expression is induced in murine skeletal muscle by hindlimb ischemia (HLI), and in cultured myotubes by hypoxia, suggesting a potential role for ERRα in ischemic response. To test this, we generated skeletal muscle-specific ERRα transgenic (TG) mice. In these mice, ERRα drives myofiber type switch from glycolytic type IIB to oxidative type IIA/IIX myofibers, which are typically associated with more vascular supply in muscle. Indeed, RNA sequencing and functional enrichment analysis of TG muscle revealed that "paracrine angiogenesis" is the top-ranked transcriptional program activated by ERRα in the skeletal muscle. Immunohistochemistry and angiography showed that ERRα overexpression increases baseline capillarity, arterioles and non-leaky blood vessel formation in the skeletal muscles. Moreover, ERRα overexpression facilitates ischemic neo-angiogenesis and perfusion recovery in hindlimb musculature of mice subjected to HLI. Therefore, ERRα is a hypoxia inducible nuclear receptor that is involved in skeletal muscle angiogenesis and could be potentially targeted for treating PAD/CLI.
Keyphrases
- skeletal muscle
- endothelial cells
- insulin resistance
- high fat diet induced
- vascular endothelial growth factor
- high glucose
- transcription factor
- single cell
- cell proliferation
- wound healing
- poor prognosis
- binding protein
- estrogen receptor
- metabolic syndrome
- percutaneous coronary intervention
- oxidative stress
- optical coherence tomography
- magnetic resonance
- long non coding rna
- quality improvement
- wild type
- subarachnoid hemorrhage
- heat stress