In Silico Identification of miRNA-lncRNA Interactions in Male Reproductive Disorder Associated with COVID-19 Infection.
Soudabeh SabetianIsabella CastiglioniBahia Namavar JahromiPegah MousaviClaudia CavaPublished in: Cells (2021)
Coronavirus disease 2019 (COVID-19), a global pandemic, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2) is the receptor for SARS-CoV-2 and transmembrane serine protease 2 (TMPRSS2) facilitates ACE2-mediated virus entry. Moreover, the expression of ACE2 in the testes of infertile men is higher than normal, which indicates that infertile men may be susceptible to be infected and SARS-CoV-2 may cause reproductive disorder through the pathway induced by ACE2 and TMPRSS2. Little is known about the pathway regulation of ACE2 and TMPRSS2 expression in male reproductive disorder. Since the regulation of gene expression is mediated by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) at the post-transcriptional level, the aim of this study was to analyze the dysregulated miRNA-lncRNA interactions of ACE2 and TMPRSS2 in male reproductive disorder. Using bioinformatics analysis, we speculate that the predicted miRNAs including miR-125a-5p, miR-125b-5p, miR-574-5p, and miR-936 as regulators of ACE2 and miR-204-5p as a modulator of TMPRSS2 are associated with male infertility. The lncRNAs with a tissue-specific expression for testis including GRM7-AS3, ARHGAP26-AS1, BSN-AS1, KRBOX1-AS1, CACNA1C-IT3, AC012361.1, FGF14-IT1, AC012494.1, and GS1-24F4.2 were predicted. The identified miRNAs and lncRNAs are proposed as potential biomarkers to study the possible association between COVID-19 and male infertility. This study encourages further studies of miRNA-lncRNA interactions to explain the molecular mechanisms of male infertility in COVID-19 patients.
Keyphrases
- sars cov
- angiotensin converting enzyme
- respiratory syndrome coronavirus
- coronavirus disease
- angiotensin ii
- long non coding rna
- poor prognosis
- gene expression
- polycystic ovary syndrome
- bioinformatics analysis
- cell proliferation
- transcription factor
- type diabetes
- molecular docking
- dna methylation
- insulin resistance
- skeletal muscle
- heat shock