Site-selective functionalization of the heterobenzylic C(sp 3 )-H bonds of pyridines and related heteroaromatic compounds presents challenges associated with the basic nitrogen atom and the variable reactivity among different positions on the heteroaromatic ring. Methods for functionalization of 2- and 4-alkylpyridines are increasingly available through polar pathways that leverage resonance stabilization of charge build-up at these positions. In contrast, functionalization of 3-alkylpyridines is largely inaccessible. Here, we report a photochemically promoted method for chlorination of non-resonant heterobenzylic C(sp 3 )-H sites in 3-alkylpyridines and related alkylheteroaromatics. Density functional theory calculations show that the optimal reactivity reflects a balance between the energetics of the two radical-chain propagation steps, with the preferred reagent consisting of an N -chlorosulfonamide. The operationally simple chlorination protocol enables access to heterobenzylic chlorides which serve as versatile intermediates in C-H cross-coupling reactions between heteroaromatic building blocks and diverse oxidatively sensitive nucleophiles using high-throughput experimentation.