Login / Signup

Development of PLA/Lignin Bio-Composites Compatibilized by Ethylene Glycol Diglycidyl Ether and Poly (ethylene glycol) Diglycidyl Ether.

Abdul Shakoor SharNingning WangTianyu ChenXiaoying ZhaoYun-Xuan Weng
Published in: Polymers (2023)
Poly (lactic acid) (PLA) is a promising green substitute for conventional petroleum-based plastics in a variety of applications. However, the wide application of PLA is still limited by its disadvantages, such as slow crystallization rate, inadequate gas barrier, thermal degradation, etc. In this study, lignin (1, 3, 5 PHR) was incorporated into PLA to improve the thermal, mechanical, and barrier properties of PLA. Two low-viscosity epoxy resins, ethylene glycol diglycidyl ether (EGDE) and poly (ethylene glycol) diglycidyl ether (PEGDE), were used as compatibilizers to enhance the performance of the composites. The addition of lignin improved the onset degradation temperature of PLA by up to 15 °C, increased PLA crystallinity, improved PLA tensile strength by approximately 15%, and improved PLA oxygen barrier by up to 58.3%. The addition of EGDE and PEGDE both decreased the glass transition, crystallization, and melting temperatures of the PLA/lignin composites, suggesting their compatabilizing and plasticizing effects, which contributed to improved oxygen barrier properties of the PLA/lignin composites. The developed PLA/lignin composites with improved thermal, mechanical, and gas barrier properties can potentially be used for green packaging applications.
Keyphrases
  • ionic liquid
  • reduced graphene oxide
  • lactic acid
  • high resolution
  • gold nanoparticles
  • room temperature