Login / Signup

Plagiodera versicolora feeding induces systemic and sexually differential defense responses in poplars.

Liu XuejiaoYi ZengLe YangMenghan LiMingyue FuSheng Zhang
Published in: Physiologia plantarum (2022)
Dioecious plants have evolved effective defense strategies to deal with various biotic and abiotic stresses. However, little is known regarding sexual differences in their defense against herbivores. In this study, we investigated the mechanism of systemic defense responses in male and female Populus cathayana attacked by Plagiodera versicolora Laicharting. The results revealed that P. cathayana exhibits sexually differential responses to a defoliator. The percentage of damaged leaf area was greater in males than in females. Furthermore, the observed saccharide changes imply that males and females exhibit different response times to defoliators. The contents of flavonoids and anthocyanins were significantly increased in both sexes but were higher in females. Specifically, the jasmonic acid (JA) pathway plays an important role. Expression of pest-related genes further revealed that hormones induce changes in downstream genes and metabolites, and upregulation of JA ZIM-domain (JAZ) and CORONATINE INSENSITIVE 1 (COI1) was more significant in females. In the undamaged adjacent leaves, metabolite and gene changes displayed similar patterns to the damaged local leaves, but levels of JA, JAZ1 and COI1 were higher in females. Therefore, our data confirmed that plants initiate the JA pathway to defend against herbivores, that there is systematic signal transduction, and that this ability is stronger in females than in males. This study provides new insights into the resistance of dioecious plants to herbivory and adds a new theoretical basis for the systemic signal transduction of plants in response to biotic stress.
Keyphrases
  • poor prognosis
  • genome wide
  • genome wide identification
  • cell proliferation
  • innate immune
  • mental health
  • ms ms
  • dna methylation
  • electronic health record
  • machine learning
  • gene expression
  • big data
  • high resolution