Login / Signup

Life Cycle Assessment-Based Comparative Study between High-Yield and "Standard" Bottom-Up Procedures for the Fabrication of Carbon Dots.

Sónia FernandesJoaquim Carlos Gomes Esteves da SilvaLuís Pinto da Silva
Published in: Materials (Basel, Switzerland) (2022)
Carbon dots (CDs) are carbon-based nanomaterials with remarkable properties that can be produced from a wide variety of synthesis routes. Given that "standard" bottom-up procedures are typically associated with low synthesis yields, different authors have been trying to devise alternative high-yield fabrication strategies. However, there is a doubt if sustainability-wise, the latter should be really preferred to the former. Herein, we employed a Life Cycle Assessment (LCA) approach to compare and understand the environmental impacts of high-yield and "standard" bottom-up strategies, by applying different life cycle impact assessment (LCIA) methods. These routes were: (1) production of hydrochar, via the hydrothermal treatment of carbon precursors, and its alkaline peroxide treatment into high-yield CDs; (2) microwave treatment of carbon precursors doped with ethylenediamine; (3) and (6) thermal treatment of carbon precursor and urea; (4) hydrothermal treatment of carbon precursor and urea; (5) microwave treatment of carbon precursor and urea. For this LCA, four LCIA methods were used: ReCiPe, Greenhouse Gas Protocol, AWARE, and USEtox. Results identified CD-5 as the most sustainable synthesis in ReCiPe, Greenhouse Gas Protocol, and USEtox. On the other hand, in AWARE, the most sustainable synthesis was CD-1. It was possible to conclude that, in general, high-yield synthesis (CD-1) was not more sustainable than "standard" bottom-up synthesis, such as CD-5 and CD-6 (also with relatively high-yield). More importantly, high-yield synthesis (CD-1) did not generate much lower environmental impacts than "standard" approaches with low yields, which indicates that higher yields come with relevant environmental costs.
Keyphrases
  • life cycle
  • randomized controlled trial
  • climate change
  • risk assessment
  • nk cells
  • radiofrequency ablation