Login / Signup

Quantum defects as versatile anchors for carbon nanotube functionalization.

Florian A MannPhillip GalonskaNiklas HerrmannSebastian Kruss
Published in: Nature protocols (2022)
Single-wall carbon nanotubes (SWCNTs) are used in diverse applications that require chemical tailoring of the SWCNT surface, including optical sensing, imaging, targeted drug delivery and single-photon generation. SWCNTs have been noncovalently modified with (bio)polymers to preserve their intrinsic near-infrared fluorescence. However, demanding applications (e.g., requiring stability in biological fluids) would benefit from a stable covalent linkage between the SWCNT and the functional unit (e.g., antibody, fluorophore, drug). Here we present how to use diazonium salt chemistry to introduce sp 3 quantum defects in the SWCNT carbon lattice to serve as handles for conjugation while preserving near-infrared fluorescence. In this protocol, we describe the straightforward, stable (covalent), highly versatile and scalable functionalization of SWCNTs with biomolecules such as peptides and proteins to yield near-infrared fluorescent SWCNT bioconjugates. We provide a step-by-step procedure covering SWCNT dispersion, quantum defect incorporation, bioconjugation, in situ peptide synthesis on SWCNTs, and characterization, which can be completed in 5-7 d.
Keyphrases