Login / Signup

Impact of a non-synonymous Q281R polymorphism on structure of human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2 ).

Arun Bahadur GurungAtanu Bhattacharjee
Published in: Journal of cellular biochemistry (2018)
Non-synonymous single nucleotide polymorphisms (nsSNPs) are genetic variations at single base resulting in an amino acid change which have been associated with various complex human diseases. The human Lipoprotein-associated phospholipase A2 (Lp-PLA2 ) gene harbours a rare Q281R polymorphism which was previously reported to cause loss of enzymatic function. Lp-PLA2 is an important enzyme which catalyzes the hydrolysis of polar phospholipids releasing pro-atherogenic and pro-inflammatory mediators involved in the pathogenesis of atherosclerosis. Our current study is aimed at elucidating the structural and functional consequences of Q281R polymorphism on Lp-PLA2 . The Q281R mutation is classified as deleterious and causes protein instability as deduced from evolutionary, folding free energy changes and Support vector machine (SVM)-based methods. A Q281R mutant structure was deciphered using homology modelling approach and was validated using phi and psi dihedral angles distribution, ERRAT, Verify_3D scores, Protein Structure Analysis (ProSA) energ,y and Z-score. A decreased hydrophobic interactions and weaker substrate binding affinity was observed in the mutant compared to the wild- type (WT) using molecular docking. Further, the mutant displayed enhanced structural flexibility particularly in the low density lipoprotein (LDL) binding domain, decreased solvent accessibility of catalytic residues-Phe274 and Ser273 and increased Cɑ distance between Phe274 and Leu153 and large conformational entropy change as inferred from all-atom molecular dynamics (MD) simulation and essential dynamics (ED) studies. Our results corroborate well with previous experimental studies and thus these aberrations in the Q281R mutant structure may help explain the molecular basis of loss of enzyme activity.
Keyphrases