PPARα agonist fenofibrate attenuates iron-induced liver injury in mice by modulating the Sirt3 and β-catenin signaling.
Ashok MandalaWilliam J ChenAustin ArmstrongMilan R MalhotraSanmathi ChavalmaneKyle S McCommisAnping ChenDanielle CarpenterPratim BiswasJaya P Gnana-PrakasamPublished in: American journal of physiology. Gastrointestinal and liver physiology (2021)
Iron accumulation is frequently associated with chronic liver diseases. However, our knowledge on how iron contributes to the liver injury is limited. Aberrant Wnt/β-catenin signaling is a hallmark of several hepatic pathologies. We recently reported that peroxisome proliferator-activated receptor α (PPARα) agonist, fenofibrate, prevents iron-induced oxidative stress and β-catenin signaling by chelating the iron. Sirtuin3 (Sirt3), a type of NAD+-dependent deacetylase, that plays a critical role in metabolic regulation was found to prevent ischemia reperfusion injury (IRI) by normalizing the Wnt/β-catenin pathway. In the present study, we explored if fenofibrate prevents iron-induced liver injury by regulating the Sirt3 and β-catenin signaling. In vitro and in vivo iron treatment resulted in the downregulation of PPARα, Sirt3, active β-catenin, and its downstream target gene c-Myc in the mouse liver. Pharmacological activation of Sirt3, both in vitro and in vivo, by Honokiol (HK), a known activator of Sirt3, abrogated the inhibitory effect of iron overload on active β-catenin expression and prevented the iron-induced upregulation of α smooth muscle actin (αSMA) and TGFβ expression. Intrinsically, PPARα knockout mice showed significant downregulation of hepatic Sirt3 levels. In addition, treatment of iron overload mice with PPARα agonist fenofibrate reduced hepatic iron accumulation and prevented iron-induced downregulation of liver Sirt3 and active β-catenin, mitigating the progression of fibrosis. Thus, our results establish a novel link between hepatic iron and PPARα, Sirt3, and β-catenin signaling. Further exploration on the mechanisms by which fenofibrate ameliorates iron-induced liver injury likely has significant therapeutic impact on iron-associated chronic liver diseases.NEW & NOTEWORTHY Hepatic intracellular iron accumulation has been implicated in the pathophysiology of chronic liver diseases. In this study, we identified a novel mechanism involved in the progression of fibrosis. Excess iron accumulation in liver caused downregulation of PPARα-Sirt3-Wnt signaling leading to fibrosis. This work has significant translational potential as PPARα agonist fenofibrate could be an attractive therapeutic drug for the treatment of liver disorders associated with iron overload.
Keyphrases
- ischemia reperfusion injury
- iron deficiency
- oxidative stress
- cell proliferation
- liver injury
- drug induced
- stem cells
- poor prognosis
- insulin resistance
- type diabetes
- emergency department
- signaling pathway
- high glucose
- dna methylation
- nitric oxide
- inflammatory response
- metabolic syndrome
- climate change
- mouse model
- long non coding rna
- binding protein
- transcription factor
- copy number