Login / Signup

Redox resetting of cisplatin-resistant ovarian cancer cells by cisplatin-encapsulated nanostructured lipid carriers.

Disha MittalLargee BiswasAnita Kamra Verma
Published in: Nanomedicine (London, England) (2021)
Aim: To sensitize cisplatin (Cis)-resistant ovarian cancer cells toward Cis using Cis-loaded nanostructured lipid carriers (CisNLCs). Materials & methods: CisNLCs were synthesized and characterized using dynamic light scattering, Fourier transform IR and x-ray diffraction (XRD). Sensitivity of PA-1 and CaOV3 cells to Cis and its biotoxicity were assessed. Further, expression of the Cis-resistance markers GSTPi and ATP7B, and apoptotic markers Bax, Bcl2 and Cas9 were quantified by real-time PCR. Results: The size of synthesized CisNLCs was approximately 179.3 ± 2.32 nm and surface charge was -33.9 ± 1.47 mV. IC50 was 210 μg/ml in PA-1 and 500 μg/ml in CaOV3. CisNLCs modulated reactive oxygen species levels in CaOV3 cells. Reduced GSTPi and decreased Cis efflux via ATP7B sequestration caused Cis to accumulate in cytoplasm, thereby augmenting apoptosis in cells. Conclusion: CisNLCs sensitize CaOV3 by redox resetting, indicating their immense therapeutic potential.
Keyphrases