Bio-Pulsed Stimulation Effectively Improves the Production of Avian Mesenchymal Stem Cell-Derived Extracellular Vesicles That Enhance the Bioactivity of Skin Fibroblasts and Hair Follicle Cells.
Ju-Sheng ShiehYu-Tang ChinHsien-Chung ChiuYa-Yu HsiehHui-Rong ChengHai GuFung-Wei ChangPublished in: International journal of molecular sciences (2022)
Mesenchymal stem cell (MSC)-derived extracellular vesicles (exosomes) possess regeneration, cell proliferation, wound healing, and anti-senescence capabilities. The functions of exosomes can be modified by preconditioning MSCs through treatment with bio-pulsed reagents ( Polygonum multiflorum Thunb extract). However, the beneficial effects of bio-pulsed small extracellular vesicles (sEVs) on the skin or hair remain unknown. This study investigated the in vitro mechanistic basis through which bio-pulsed sEVs enhance the bioactivity of the skin fibroblasts and hair follicle cells. Avian-derived MSCs (AMSCs) were isolated, characterized, and bio-pulsed to produce AMSC-sEVs, which were isolated, lyophilized, characterized, and analyzed. The effects of bio-pulsed AMSC-sEVs on cell proliferation, wound healing, and gene expression associated with skin and hair bioactivity were examined using human skin fibroblasts (HSFs) and follicle dermal papilla cells (HFDPCs). Bio-pulsed treatment significantly enhanced sEVs production by possibly upregulating RAB27A expression in AMSCs. Bio-pulsed AMSC-sEVs contained more exosomal proteins and RNAs than the control. Bio-pulsed AMSC-sEVs significantly augmented cell proliferation, wound healing, and gene expression in HSFs and HFDPCs. The present study investigated the role of bio-pulsed AMSC-sEVs in the bioactivity of the skin fibroblasts and hair follicle cells as mediators to offer potential health benefits for skin and hair.
Keyphrases
- wound healing
- mesenchymal stem cells
- induced apoptosis
- cell proliferation
- gene expression
- cell cycle arrest
- soft tissue
- stem cells
- bone marrow
- healthcare
- umbilical cord
- oxidative stress
- cell cycle
- extracellular matrix
- cell death
- risk assessment
- mental health
- brain injury
- poor prognosis
- mass spectrometry
- replacement therapy
- long non coding rna
- subarachnoid hemorrhage
- smoking cessation
- ischemia reperfusion injury
- health promotion