Cardiac L-type calcium channel regulation by Leucine-Rich Repeat-Containing Protein 10.
Natthaphat Siri-AngkulTimothy J KampPublished in: Channels (Austin, Tex.) (2024)
L-type calcium channels (LTCCs), the major portal for Ca 2+ entry into cardiomyocytes, are essential for excitation-contraction coupling and thus play a central role in regulating overall cardiac function. LTCC function is finely tuned by multiple signaling pathways and accessory proteins. Leucine-rich repeat-containing protein 10 (LRRC10) is a little studied cardiomyocyte-specific protein recently identified as a modulator of LTCCs. LRRC10 exerts a remarkable effect on LTCC function, more than doubling L-type Ca 2+ current (I Ca,L ) amplitude in a heterologous expression system by altering the gating of the channels without changing their surface membrane expression. Genetic ablation of LRRC10 expression in mouse and zebrafish hearts leads to a significant reduction in I Ca,L density and a slowly progressive dilated cardiomyopathy in mice. Rare sequence variants of LRRC10 have been identified in dilated cardiomyopathy and sudden unexplained nocturnal cardiac death syndrome, but these variants have not been clearly linked to disease. Nevertheless, the DCM-associated variant, I195T, converted LRRC10 from a I Ca,L potentiator to a I Ca,L suppressor, thus illustrating the wide dynamic range of LRRC10-mediated I Ca,L regulation. This review focuses on the contemporary knowledge of LTCC modulation by LRRC10 and discusses potential directions for future investigations.
Keyphrases
- poor prognosis
- binding protein
- protein kinase
- copy number
- left ventricular
- healthcare
- signaling pathway
- protein protein
- obstructive sleep apnea
- blood pressure
- metabolic syndrome
- type diabetes
- gene expression
- physical activity
- heart failure
- cell proliferation
- skeletal muscle
- small molecule
- atrial fibrillation
- current status
- pi k akt