Login / Signup

Maximum likelihood based analysis of equally spaced longitudinal count data with first-order antedependence and overdispersion.

Victoria GamermanMatthew GuerraJustine Shults
Published in: SpringerPlus (2016)
This manuscript implements a maximum likelihood based approach that is appropriate for equally spaced longitudinal count data with over-dispersion, so that the variance of the outcome variable is larger than expected for the assumed Poisson distribution. We implement the proposed method in the analysis of seizure data and a subset of German Socio-Economic Panel data. To demonstrate the importance of correctly modeling the over-dispersion, we make comparisons with the semi-parametric generalized estimating equations approach that incorrectly ignores any over-dispersion in the data. Our simulations demonstrate that accounting for over-dispersion results in improved small-sample efficiency and appropriate coverage probabilities. We also provide code in R so that readers can implement our approach in their own analyses.
Keyphrases