Transient Scute activation via a self-stimulatory loop directs enteroendocrine cell pair specification from self-renewing intestinal stem cells.
Jun ChenNa XuChenhui WangPin HuangHuanwei HuangZhen JinZhongsheng YuTao CaiRenjie JiaoRongwen XiPublished in: Nature cell biology (2018)
The process through which multiple types of cell-lineage-restricted progenitor cells are specified from multipotent stem cells is unclear. Here we show that, in intestinal stem cell lineages in adult Drosophila, in which the Delta-Notch-signalling-guided progenitor cell differentiation into enterocytes is the default mode, the specification of enteroendocrine cells (EEs) is initiated by transient Scute activation in a process driven by transcriptional self-stimulation combined with a negative feedback regulation between Scute and Notch targets. Scute activation induces asymmetric intestinal stem cell divisions that generate EE progenitor cells. The mitosis-inducing and fate-inducing activities of Scute guide each EE progenitor cell to divide exactly once prior to its terminal differentiation, yielding a pair of EEs. The transient expression of a fate inducer therefore specifies both type and numbers of committed progenitor cells originating from stem cells, which could represent a general mechanism used for diversifying committed progenitor cells from multipotent stem cells.