Haplotype-resolved genome assembly and implementation of VitExpress, an open interactive transcriptomic platform for grapevine.
Anis DjariGuillaume MadignierOlivia Di ValentinThibault GilletPierre FrasseAmel DjouhriGuojian HuSebastien JulliardMingchun LiuYang ZhangFarid RegadJulien PirrelloElie MazaMondher BouzayenPublished in: Proceedings of the National Academy of Sciences of the United States of America (2024)
Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous Vitis vinifera cultivars by combining high-fidelity long-read sequencing and high-throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar. The deletions/insertions, inversions, translocations, and duplications provide insight into the evolutionary history and parental relationship among grape varieties. Integration of de novo single long-read sequencing of full-length transcript isoforms (Iso-Seq) yielded a highly improved genome annotation. Given its higher contiguity, and the robustness of the IsoSeq-based annotation, the Chasselas assembly meets the standard to become the annotated reference genome for V. vinifera . Building on these resources, we developed VitExpress, an open interactive transcriptomic platform, that provides a genome browser and integrated web tools for expression profiling, and a set of statistical tools (StatTools) for the identification of highly correlated genes. Implementation of the correlation finder tool for MybA1 , a major regulator of the anthocyanin pathway, identified candidate genes associated with anthocyanin metabolism, whose expression patterns were experimentally validated as discriminating between black and white grapes. These resources and innovative tools for mining genome-related data are anticipated to foster advances in several areas of grapevine research.