Login / Signup

Advancing drug safety science by integrating molecular knowledge with post-marketing adverse event reports.

Theodoros G SoldatosSarah KimStephan SchmidtLawrence J LeskoDavid B Jackson
Published in: CPT: pharmacometrics & systems pharmacology (2022)
Promising drug development efforts may frequently fail due to unintended adverse reactions. Several methods have been developed to analyze such data, aiming to improve pharmacovigilance and drug safety. In this work, we provide a brief review of key directions to quantitatively analyzing adverse events and explore the potential of augmenting these methods using additional molecular data descriptors. We argue that molecular expansion of adverse event data may provide a path to improving the insights gained through more traditional pharmacovigilance approaches. Examples include the ability to assess statistical relevance with respect to underlying biomolecular mechanisms, the ability to generate plausible causative hypotheses and/or confirmation where possible, the ability to computationally study potential clinical trial designs and/or results, as well as the further provision of advanced features incorporated in innovative methods, such as machine learning. In summary, molecular data expansion provides an elegant way to extend mechanistic modeling, systems pharmacology, and patient-centered approaches for the assessment of drug safety. We anticipate that such advances in real-world data informatics and outcome analytics will help to better inform public health, via the improved ability to prospectively understand and predict various types of drug-induced molecular perturbations and adverse events.
Keyphrases