Login / Signup

Ruminal transcript abundance of the centromere-associated protein E gene may influence residual feed intake in beef steers.

A R RathertA M MeyerA P FooteR J KernH C Cunningham-HollingerL A KuehnAmanda K Lindholm-Perry
Published in: Animal genetics (2020)
A better understanding regarding the mechanisms by which the rumen processes feed may assist us in identifying animals with superior feed efficiency. Studies to evaluate the gene expression of rumen tissue have previously been performed to analyze their relationship with feed efficiency. Continuing this research is critical to determine whether the expression of the genes identified is associated with feed efficiency in additional populations of beef cattle to ensure that they are robust across breed and environment. A previous rumen-transcriptome study on Hereford × Angus steers identified 122 differentially expressed genes (PFDR  < 0.05) associated with residual feed intake (RFI), a measure of feed efficiency. The purpose of our study was to test the most divergent, up- and down-regulated genes in the rumen tissue of an unrelated population of Hereford × Angus steers that included two contemporary groups. A total of 13 genes were evaluated by quantitative real-time PCR. The centromere-associated protein E (CENPE) gene was expressed in lower concentrations in the rumen epithelium of steers in the more efficient (low RFI) group in both contemporary groups of animals, which was the same as the previous study. In addition, CENPE, a gene involved in chromosome alignment during mitosis, has also been associated with growth traits in cattle and pigs. There was no relationship between the expression of the other 12 genes tested with RFI in the population of steers in this study, which illustrates the importance of validating gene expression data in additional populations.
Keyphrases