Login / Signup

The Genomic Architecture of Flowering Time Varies Across Space and Time in Mimulus guttatus.

Patrick J MonnahanJohn K Kelly
Published in: Genetics (2017)
The degree to which genomic architecture varies across space and time is central to the evolution of genomes in response to natural selection. Bulked-segregant mapping combined with pooled sequencing provides an efficient means to estimate the effect of genetic variants on quantitative traits. We develop a novel likelihood framework to identify segregating variation within multiple populations and generations while accommodating estimation error on a sample- and SNP-specific basis. We use this method to map loci for flowering time within natural populations of Mimulus guttatus, collecting the early- and late-flowering plants from each of three neighboring populations and two consecutive generations. Structural variants, such as inversions, and genes from multiple flowering-time pathways exhibit the strongest associations with flowering time. We find appreciable variation in genetic effects on flowering time across both time and space; the greatest differences evident between populations, where numerous factors (environmental variation, genomic background, and private polymorphisms) likely contribute to heterogeneity. However, the changes across years within populations clearly identify genotype-by-environment interactions as an important influence on flowering time variation.
Keyphrases
  • arabidopsis thaliana
  • genome wide
  • copy number
  • genetic diversity
  • dna methylation
  • randomized controlled trial
  • gene expression
  • clinical trial
  • risk assessment
  • climate change
  • human health
  • double blind