Login / Signup

A Novel Y-Shaped, S-O-N-O-S-Bridged Cross-Link between Three Residues C22, C44, and K61 Is Frequently Observed in the SARS-CoV-2 Main Protease.

Kai S YangLauren R BlankenshipSyuan-Ting Alex KuoYan J ShengPingwei LiCarol A FierkeDavid H RussellXin YanShiqing XuWenshe Ray Liu
Published in: ACS chemical biology (2023)
As the COVID-19 pathogen, SARS-CoV-2 relies on its main protease (M Pro ) for pathogenesis and replication. During crystallographic analyses of M Pro crystals that were exposed to the air, a uniquely Y-shaped, S-O-N-O-S-bridged post-translational cross-link that connects three residues C22, C44, and K61 at their side chains was frequently observed. As a novel covalent modification, this cross-link serves potentially as a redox switch to regulate the catalytic activity of M Pro , a demonstrated drug target of COVID-19. The formation of this linkage leads to a much more open active site that can potentially be targeted for the development of novel SARS-CoV-2 antivirals. The structural rearrangement of M Pro by this cross-link indicates that small molecules that lock M Pro in the cross-linked form can potentially be used with other active-site-targeting molecules such as paxlovid for synergistic effects in inhibiting SARS-CoV-2 viral replication.
Keyphrases
  • sars cov
  • anti inflammatory
  • respiratory syndrome coronavirus
  • cancer therapy
  • minimally invasive
  • signaling pathway
  • ionic liquid
  • hepatitis c virus