Login / Signup

Effects of diazoxide on streptozotocin induced β cell damage via HSP70/HSP90/TLR4/AMPK signaling pathways.

Salih Tunc Kaya
Published in: Biotechnic & histochemistry : official publication of the Biological Stain Commission (2023)
I investigated the effects of diazoxide, a mitochondrial potassium channel opener, on streptozotocin (STZ) induced pancreatic β cell damage via the HSP70/HSP90/TLR4/AMPK signaling pathways in vitro. I used the pancreatic β cell line, 1.1B4, to create four groups: control, STZ treated, diazoxide treated, STZ + diazoxide treated. The STZ treated cells were exposed to 20 µM STZ for 2 h with or without 100 µM diazoxide for 24 h. Total antioxidant status (TAS), total oxidant status (TOS), cell viability and mitochondrial membrane potential (MMP) were measured. Expression of ATP-sensitive potassium channel (K ATP ) subunits, heat shock protein-70 (HSP70), heat shock protein-90 (HSP90), toll-like receptor 4 (TLR4), AMP-activated protein kinase (AMPK) and some apoptotic proteins were detected using western blotting. Apoptosis was assessed using TUNEL staining. STZ increased TOS and OSI in the pancreatic β cells; however, diazoxide failed to improve oxidative stress. Also, STZ increased tunnel positive cells in the pancreatic β cells. Diazoxide decreased the tunnel positive cells in the STZ treated β cell. STZ decreased MMP; however, diazoxide did not normalize MMP in the STZ induced β cells. Diazoxide increased the HSP70:HSP90 protein expression ratio. STZ decreased expression of AMPK and subunits of K ATP channel and increased the expression of caspase-3 and TLR4 protein; diazoxide normalized the expression of all proteins studied. K ATP channel opening by diazoxide protects pancreatic β cells against STZ toxicity via HSP70/HSP90/TLR4/AMPK signaling.
Keyphrases