Login / Signup

Applying Membrane Distillation for the Recovery of Nitrate from Saline Water Using PVDF Membranes Modified as Superhydrophobic Membranes.

Fatemeh EbrahimiWanqin JinAmir Razmjou
Published in: Polymers (2020)
In this study, a flat sheet direct contact membrane distillation (DCMD) module was designed to eliminate nitrate from water. A polyvinylidene fluoride (PVDF) membrane was used in a DCMD process at an ambient pressure and at a temperature lower than the boiling point of water. The electrical conductivity of the feed containing nitrate increased, while the electrical conductivity of the permeate remained constant during the entire process. The results indicated that the nitrate ions failed to pass through the membrane and their concentration in the feed increased as pure water passed through the membrane. Consequently, the membrane was modified using TiO2 nanoparticles to make a hierarchical surface with multi-layer roughness on the micro/nanoscales. Furthermore, 1H,1H,2H,2H-Perfluorododecyltrichlorosilane (FTCS) was added to the modified surface to change its hydrophobic properties into superhydrophobic properties and to improve its performance. The results for both membranes were compared and reported on a pilot scale using MATLAB. In the experimental scale (a membrane surface area of 0.0014 m2, temperature of 77 °C, nitrate concentration of 0.9 g/Kg, and flow rate of 0.0032 Kg/s), the flux was 2.3 Kgm-2h-1. The simulation results of MATLAB using these data showed that for the removal of nitrate (with a concentration of 35 g/Kg) from the intake feed with a flow rate of 1 Kg/s and flux of 0.96 Kgm-2h-1, a membrane surface area of 0.5 m2 was needed.
Keyphrases
  • drinking water
  • nitric oxide
  • randomized controlled trial
  • clinical trial
  • machine learning
  • air pollution
  • physical activity
  • electronic health record
  • big data