Modafinil-coated nanoparticle increases expressions of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and neuronal nuclear protein, and protects against middle cerebral artery occlusion-induced neuron apoptosis in the rat hippocampus.
Alireza TorfehZohreh AbdolmalekiSepideh NazarianSeyed Hamed Shirazi BeheshtihaPublished in: Anatomical record (Hoboken, N.J. : 2007) (2020)
The present study investigates the neuroprotective effects of modafinil-coated nanoparticle in rats' hippocampal CA1 region. Male Wistar rats (n = 48) were randomly divided into four groups. Then middle cerebral artery occlusion (MCAO) was performed by inserting a silicone coat filament in the right internal carotid artery via the external carotid artery until it reached the anterior cerebral artery. Modafinil (100 mg/kg) or modafinil-coated nanoparticle (100 mg/kg) was given to the rats as an oral gavage once a day. Infarct volume, brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neuronal nuclear protein (NeuN) and Caspase-3 and, Caspase-8 as apoptotic genes were measured in the hippocampal CA1 region. Cresyl violet staining revealed that modafinil nanoparticle significantly decreased the neurodegeneration. Reverse transcription polymerase chain reaction results showed that modafinil nanoparticle use significantly increased the expression of neurotrophic factors (even more than modafinil alone group; p = .01). Moreover, the apoptotic markers were significantly decreased in nanoparticle modafinil (MN group); p < .05). The western blot analysis and Immunohistochemistry results confirmed the neuroprotective and anti-apoptotic effects of modafinil nanoparticle. This study's results showed that the use of modafinil-coated nanoparticle has neuroprotective effects by increasing neurotrophic factors and reducing apoptosis after MCAO in the CA1 area of the hippocampus. However, further studies are needed especially, in human samples.
Keyphrases
- middle cerebral artery
- cell death
- internal carotid artery
- cerebral ischemia
- iron oxide
- oxidative stress
- subarachnoid hemorrhage
- endothelial cells
- heart failure
- cell cycle arrest
- endoplasmic reticulum stress
- binding protein
- blood brain barrier
- poor prognosis
- brain injury
- coronary artery disease
- left ventricular
- protein protein
- neuropathic pain
- diabetic rats
- dna methylation
- anti inflammatory
- atrial fibrillation
- long non coding rna
- case control