Login / Signup

Long-Term Creep Behavior Prediction of Sol-Gel Derived SiO2- and TiO2-Wood Composites Using the Stepped Isostress Method.

Ke-Chang HungTung-Lin WuJyh-Horng Wu
Published in: Polymers (2019)
In this study, methyltrimethoxysilane (MTMOS), methyltriethoxysilane (MTEOS), tetraethoxysilane (TEOS), and titanium(IV) isopropoxide (TTIP) were used as precursor sols to prepare wood-inorganic composites (WICs) by a sol-gel process, and subsequently, the long-term creep behavior of these composites was estimated by application of the stepped isostress method (SSM). The results revealed that the flexural modulus of wood and WICs were in the range of 9.8-10.5 GPa, and there were no significant differences among them. However, the flexural strength of the WICs (93-103 MPa) was stronger than that of wood (86 MPa). Additionally, based on the SSM processes, smooth master curves were obtained from different SSM testing parameters, and they fit well with the experimental data. These results demonstrated that the SSM was a useful approach to evaluate the long-term creep behavior of wood and WICs. According to the Eyring equation, the activation volume of the WICs prepared from MTMOS (0.825 nm3) and TEOS (0.657 nm3) was less than that of the untreated wood (0.832 nm3). Furthermore, the WICs exhibited better performance on the creep resistance than that of wood, except for the WICMTEOS. The reduction of time-dependent modulus for the WIC prepared from MTMOS was 26% at 50 years, which is the least among all WICs tested. These findings clearly indicate that treatment with suitable metal alkoxides could improve the creep resistance of wood.
Keyphrases
  • cell wall
  • photodynamic therapy
  • reduced graphene oxide
  • randomized controlled trial
  • clinical trial
  • deep learning