Login / Signup

SEB : a computational tool for symbolic derivation of the small-angle scattering from complex composite structures.

Tobias W J JarrettCarsten Svaneborg
Published in: Journal of applied crystallography (2024)
Analysis of small-angle scattering (SAS) data requires intensive modeling to infer and characterize the structures present in a sample. This iterative improvement of models is a time-consuming process. Presented here is Scattering Equation Builder ( SEB ), a C++ library that derives exact analytic expressions for the form factors of complex composite structures. The user writes a small program that specifies how the sub-units should be linked to form a composite structure and calls SEB to obtain an expression for the form factor. SEB supports e.g. Gaussian polymer chains and loops, thin rods and circles, solid spheres, spherical shells and cylinders, and many different options for how these can be linked together. The formalism behind SEB is presented and simple case studies are given, such as block copolymers with different types of linkage, as well as more complex examples, such as a random walk model of 100 linked sub-units, dendrimers, polymers and rods attached to the surfaces of geometric objects, and finally the scattering from a linear chain of five stars, where each star is built up of four diblock copolymers. These examples illustrate how SEB can be used to develop complex models and hence reduce the cost of analyzing SAS data.
Keyphrases