Login / Signup

Comparative effects of medium-chain fatty acids or phytobiotics-based feed additives on performance, caecum microbiota, volatile fatty acid production and intestinal morphology of broilers.

Necmettin CeylanEngin Yeniceİsmail YavaşAli Anıl ÇenesizNeşe Nuray Toprakİbrahim Çiftçi
Published in: Veterinary medicine and science (2023)
Antibiotic growth promoters have been utilized in broiler nutrition to alleviate the negative effects of the pathogenic microbes to promote performance. However, after the prohibition of antibiotics because of the increasing disclosure related to public health issues, various products have been developed as alternatives. This study was carried out to determine the effects of medium-chain fatty acids (MCFAs) or phytobiotics (essential oils [EOs] and alkaloids [ALKs]), blended feed additives on the growth performance, jejunum histomorphology, and cecal microbiota of broiler chickens. A total of 765 male Ross 308 chicks were randomly distributed into 5 experimental groups, each having 9 replicates with 17 chicks. The experimental procedures were as follows: a control group without supplementation (T1); control group+ MCFAs and EOs blend (T2); control group+ different EOs blend (T3); control group+ ALK sanguinarine (T4); and control group+ EOs and ALK piperine mixture (T5). The results showed that, broilers fed with MCFAs blended with EOs had significantly greater body weight gain during overall period in comparision to the control and T3 groups. Further, only MCFAs blended with EOs group significantly improved jejnum morphology in comparison with the control group (p ≤ 0.05). Besides, the MCFAs blended with EOs group significantly elevated propionate, acetate and butyrate concentration, and decreased the concentration of branch chain fatty acids in caecum (p ≤ 0.05). The results indicated that, the combination of MCFAs and EOs seems to have improvement effects and could be preferred as an efficient feed additive in broiler production.
Keyphrases
  • fatty acid
  • public health
  • weight gain
  • heat stress
  • body mass index
  • weight loss